

# Data Center Traffic and Measurements

# Hakim Weatherspoon

Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking November 10, 2014

Slides from SIGCOMM Internet Measurement Conference (IMC) 2010 presentation of "Analysis and Network Traffic Characteristics of Data Centers in the wild"

# Goals for Today

- Analysis and Network Traffic Characteristics of Data Centers in the wild
  - T. Benson, A. Akella, and D. A. Maltz. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (IMC), pp. 267-280. ACM, 2010.

# The Importance of Data Centers



 "A 1-millisecond advantage in trading applications can be worth \$100 million a year to a major brokerage firm"

- Internal users
  - Line-of-Business apps
  - Production test beds
- External users
  - Web portals
  - Web services
  - Multimedia applications
  - Chat/IM



#### The Case for Understanding Data Center Traffic



- Better understanding → better techniques
- Better traffic engineering techniques
  - Avoid data losses
  - Improve app performance



- Better control over jitter
- Allow multimedia apps
- Better energy saving techniques
  - Reduce data center's energy footprint
  - Reduce operating expenditures





Initial stab → network level traffic + app relationships

# Take aways and Insights Gained



- 75% of traffic stays within a rack (Clouds)
  - Applications are not uniformly placed
- Half packets are small (< 200B)</li>
  - Keep alive integral in application design
- At most 25% of core links highly utilized
  - Effective routing algorithm to reduce utilization
  - Load balance across paths and migrate VMs
- Questioned popular assumptions
  - Do we need more bisection? No
  - Is centralization feasible? Yes



#### Dataset: Data Centers Studied



- 10 data centers
- 3 classes
  - Universities
  - Private enterprise
  - Clouds
- Internal users
  - Univ/priv
  - Small
  - Local to campus
- External users
  - Clouds
  - Large
  - Globally diverse

| DC Role               | DC<br>Name | Location   | Number<br>Devices |
|-----------------------|------------|------------|-------------------|
| Universities          | EDU1       | US-Mid     | 22                |
|                       | EDU2       | US-Mid     | 36                |
|                       | EDU3       | US-Mid     | 11                |
| Private<br>Enterprise | PRV1       | US-Mid     | 97                |
|                       | PRV2       | US-West    | 100               |
| Commercial<br>Clouds  | CLD1       | US-West    | 562               |
|                       | CLD2       | US-West    | 763               |
|                       | CLD3       | US-East    | 612               |
|                       | CLD4       | S. America | 427               |
|                       | CLD5       | S. America | 427               |

#### Dataset: Collection



#### SNMP

- Poll SNMP MIBs
- Bytes-in/bytes-out/discards
- > 10 Days
- Averaged over 5 mins
- Packet Traces
  - Cisco port span
  - 12 hours
- Topology
  - Cisco Discovery Protocol

| DC<br>Name | SNMP | Packet<br>Traces | Topology |
|------------|------|------------------|----------|
| EDU1       | Yes  | Yes              | Yes      |
| EDU2       | Yes  | Yes              | Yes      |
| EDU3       | Yes  | Yes              | Yes      |
| PRV1       | Yes  | Yes              | Yes      |
| PRV2       | Yes  | Yes              | Yes      |
| CLD1       | Yes  | No               | No       |
| CLD2       | Yes  | No               | No       |
| CLD3       | Yes  | No               | No       |
| CLD4       | Yes  | No               | No       |
| CLD5       | Yes  | No               | No       |

#### Canonical Data Center Architecture





# **Applications**





- Start at bottom
  - Analyze running applications
  - Use packet traces
- BroID tool for identification
  - Quantify amount of traffic from each app



# **Applications**





- Differences between various bars
- Clustering of applications
  - PRV2\_2 hosts secured portions of applications
  - PRV2\_3 hosts unsecure portions of applications

# Analyzing Packet Traces



- Transmission patterns of the applications
- Properties of packet crucial for
  - Understanding effectiveness of techniques





- ON-OFF traffic at edges
  - Binned in 15 and 100 m. secs
  - We observe that ON-OFF persists

# Data Center Traffic is Bursty



- Understanding arrival process
  - Range of acceptable models
- What is the arrival process?
  - Heavy-tail for the 3 distributions
    - ON, OFF times, Inter-arrival,
  - Lognormal across all data centers
- Different from Pareto of WAN
  - Need new models





#### Packet Size Distribution





- Bimodal (200B and 1400B)
- Small packets
  - TCP acknowledgements
  - Keep alive packets
- Persistent connections → important to apps



#### Intra-Rack Versus Extra-Rack



- Quantify amount of traffic using interconnect
  - Perspective for interconnect analysis



**Extra-Rack = Sum of Uplinks** 

Intra-Rack = Sum of Server Links - Extra-Rack

#### Intra-Rack Versus Extra-Rack Results





- Clouds: most traffic stays within a rack (75%)
  - Colocation of apps and dependent components
- Other DCs: > 50% leaves the rack
  - Un-optimized placement

#### Extra-Rack Traffic on DC Interconnect





- Utilization: core > agg > edge
  - Aggregation of many unto few
- Tail of core utilization differs
  - Hot-spots → links with > 70% util
  - Prevalence of hot-spots differs across data centers

### Persistence of Core Hot-Spots





- Low persistence: PRV2, EDU1, EDU2, EDU3, CLD1, CLD3
- High persistence/low prevalence: PRV1, CLD2
  - 2-8% are hotspots > 50%
- High persistence/high prevalence: CLD4, CLD5
  - 15% are hotspots > 50%

# Prevalence of Core Hot-Spots





- Low persistence: very few concurrent hotspots
- High persistence: few concurrent hotspots
- High prevalence: < 25% are hotspots at any time</li>

#### Observations from Interconnect



- Links utils low at edge and agg
- Core most utilized
  - Hot-spots exists (> 70% utilization)
  - < 25% links are hotspots</p>
  - Loss occurs on less utilized links (< 70%)</li>
    - Implicating momentary bursts
- Time-of-Day variations exists
  - Variation an order of magnitude larger at core
- Apply these results to evaluate DC design requirements

# Assumption 1: Larger Bisection





- Need for larger bisection
  - VL2 [Sigcomm '09], Monsoon [Presto '08], Fat-Tree
     [Sigcomm '08], Portland [Sigcomm '09], Hedera [NSDI '10]
  - Congestion at oversubscribed core links

# **Argument for Larger Bisection**





- Need for larger bisection
  - VL2 [Sigcomm '09], Monsoon [Presto '08], Fat-Tree
     [Sigcomm '08], Portland [Sigcomm '09], Hedera [NSDI '10]
  - Congestion at oversubscribed core links
  - Increase core links and eliminate congestion

# Calculating Bisection Bandwidth





If Σ traffic (App )
Σ capacity(Bisection

1 then more device are needed at the bisection

#### Bisection Demand





- Given our data: current applications and DC design
  - NO, more bisection is not required
  - Aggregate bisection is only 30% utilized
- Need to better utilize existing network
  - Load balance across paths
  - Migrate VMs across racks

# Insights Gained

THE TOTAL PARTY OF THE PARTY OF

- 75% of traffic stays within a rack (Clouds)
  - Applications are not uniformly placed
- Half packets are small (< 200B)</li>
  - Keep alive integral in application design
- At most 25% of core links highly utilized
  - Effective routing algorithm to reduce utilization
  - Load balance across paths and migrate VMs
- Questioned popular assumptions
  - Do we need more bisection? No
  - Is centralization feasible? Yes

#### Related Works



- IMC '09 [Kandula`09]
  - Traffic is unpredictable
  - Most traffic stays within a rack
- Cloud measurements [Wang'10,Li'10]
  - Study application performance
  - End-2-End measurements

# Before Next time

- Project Interim report
  - Due Monday, November 24.
  - And meet with groups, TA, and professor
- Fractus Upgrade: Should be back online
- Required review and reading for Wednesday, November
   12
  - SoNIC: Precise Realtime Software Access and Control of Wired Networks, K.
     Lee, H. Wang and H. Weatherspoon. USENIX symposium on Networked
     Systems Design and Implementation (NSDI), April 2013, pages 213-225.
  - https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final138.pdf
- Check piazza: http://piazza.com/cornell/fall2014/cs5413
- Check website for updated schedule